师资

EN       返回上一级       师资搜索
Mikko Korhonen
研究助理教授
korhonen_mikko@hotmail.com

Employment and education:

2022 -           Research Assistant Professor, Southern University of Science and Technology

2021 - 2022   Postdoctoral fellow, Southern University of Science and Technology

2019 - 2020  Postdoctoral fellow, University of Manchester 

2014 - 2018   Ph.D. (Mathematics), École Polytechnique Fédérale de Lausanne 

2008 - 2014  B.Sc and M.Sc. (Mathematics), University of Oulu

 

Awards:

2018  1.5 year Swiss National Science Foundation fellowship

2022   2 year Shenzhen Science and Technology Innovation Commission grant (30万)

 

Publications:

1. Representatives for unipotent classes and nilpotent orbits (with David Stewart and Adam Thomas). Communications in Algebra, 50 (2022), no. 4, 1641-1661.

2. Systems of imprimitivity for wreath products (with Cai Heng Li). Journal of Algebra, 587 (2021), 628-637.

3. Decomposition of exterior and symmetric squares in characteristic two. Linear Algebra and its Applications, 624 (2021), 349-363. 

4. Jordan blocks of nilpotent elements in some irreducible representations of classical groups in good characteristic. Journal of Pure and Applied Algebra, 225 (2021), no. 8, 106694, 10 pp.  

5. A counterexample to a conjugacy conjecture of Steinberg. Transformation Groups, 25 (2020) 1209-1222. 

6. Hesselink normal forms of unipotent elements in some representations of classical groups in characteristic two. Journal of Algebra, 559 (2020) 268-319.

7. Jordan blocks of unipotent elements in some irreducible representations of classical groups in good characteristic. Proceedings of the American Mathematical Society, 147 (2019) 4205-4219.

8. Unipotent elements forcing irreducibility in linear algebraic groups. Journal of Group Theory, 21 (2018) 365-396.

9. Invariant forms on irreducible modules of simple algebraic groups. Journal of Algebra, 480 (2017) 385-422.

10. Reductive overgroups of distinguished unipotent elements in simple algebraic groups. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2018).